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Abstract. We present an exactly solvable toy model which describes the emergence of a pseudogap in an
electronic system due to a fluctuating off-diagonal order parameter. In one dimension our model reduces
to the fluctuating gap model (FGM) with a gap ∆(x) that is constrained to be of the form ∆(x) = AeiQx,
where A andQ are random variables. The FGM was introduced by Lee, Rice and Anderson [Phys. Rev. Lett.
31, 462 (1973)] to study fluctuation effects in Peierls chains. We show that their perturbative results for
the average density of states are exact for our toy model if we assume a Lorentzian probability distribution
for Q and ignore amplitude fluctuations. More generally, choosing the probability distributions of A and Q
such that the average of ∆(x) vanishes and its covariance is 〈∆(x)∆∗(x′)〉 = ∆2

s exp[−|x− x′|/ξ], we study
the combined effect of phase and amplitude fluctuations on the low-energy properties of Peierls chains.
We explicitly calculate the average density of states, the localization length, the average single-particle
Green’s function, and the real part of the average conductivity. In our model phase fluctuations generate
delocalized states at the Fermi energy, which give rise to a finite Drude peak in the conductivity. We also
find that the interplay between phase and amplitude fluctuations leads to a weak logarithmic singularity
in the single-particle spectral function at the bare quasi-particle energies. In higher dimensions our model
might be relevant to describe the pseudogap state in the underdoped cuprate superconductors.

PACS. 71.23.-k Electronic structure of disordered solids – 02.50.Ey Stochastic processes –
71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)

1 Introduction

The physical origin of the pseudogap behavior observed
in the normal state of the high-temperature cuprates is
still controversial. Several mechanisms have been pro-
posed. According to Schmalian et al. [1] the normal
state of the underdoped cuprates can be modeled by a
nearly antiferromagnetic Fermi liquid, and the experi-
mentally observed pseudogap behavior is closely related
to strong antiferromagnetic spin fluctuations. An alterna-
tive explanation which has been advanced by Emery and
Kivelson [2] relates the pseudogap behavior to precursor
superconducting fluctuations. In this scenario thermal
fluctuations of the phase of the superconducting order pa-
rameter are responsible for a destruction of superconduc-
tivity above the transition temperature Tc. However, in a
wide range of temperatures T > Tc the local amplitude of
the superconducting gap is finite. In this paper we shall
propose a simple exactly solvable phenomenological model
which describes the destruction of phase coherence due to
phase and amplitude fluctuations of the superconducting
order parameter in the pseudogap state.

To study superconducting fluctuations in a normal
metal one can start with the Gorkov equation for the
2 × 2 matrix Green’s function for electrons with energy
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dispersion ε(k) that are coupled to a space-dependent
complex pairing field ∆(r) [3],

[ω − Ĥr]G(d=3)(r, r′, ω) = δ(r− r′)σ0 , (1)

Ĥr =
(
ε(−i∇r)− µ ∆(r)

∆∗(r) ε(i∇r)− µ

)
. (2)

Here, σ0 is the 2 × 2 unit matrix and µ is the chemical
potential. In the absence of true superconducting long-
range order the pairing field ∆(r) can be considered as a
random variable with zero average and correlations that
fall off exponentially with distance,

〈∆(r)〉 = 0 , (3)

〈∆(r)∆∗(r′)〉 ≡
∫
D{∆}e−S{∆}∆(r)∆∗(r′)∫

D{∆}e−S{∆}

= ∆2
s e−|r−r′|/ξ . (4)

Here, S{∆} is the Ginzburg-Landau functional of the
order parameter field, ξ is the correlation length, and
the energy scale ∆s characterizes the strength of the
correlations.

To simplify the algebra and to make contact with
other theoretical work on pseudogap physics, we shall fo-
cus in this work on the semiclassical limit of the Gorkov
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equation, which are related to the so-called Andreev
equation [4]. In the weak coupling limit, where |∆(r)|
is small compared with the chemical potential, we may
linearize the energy dispersion in equation (1) for wave-
vectors k close to the Fermi surface, provided we are only
interested in long-wavelength, low-energy properties of the
system. In the semiclassical limit it is useful to decompose
the position vector as r = xn+r⊥ where n is a unit vector
in the direction of the momentum of the electron, and r⊥ is
orthogonal to n. Writing ∂x = n ·∇r, equations (1, 2) can
be replaced by an effective one-dimensional problem [4]

[ω − Ĥx]G(x, x′, ω) = δ(x− x′)σ0 , (5)

Ĥx =
(
−ivF∂x ∆(x)
∆∗(x) ivF∂x

)
. (6)

We shall refer to equation (6) as the Hamiltonian of the
fluctuating gap model (FGM). All quantities depend now
parametrically on r⊥ and n. Physical observables should
be averaged over all directions of n. In this paper we shall
only consider the effective one-dimensional problem de-
fined by equations (5, 6). We require that the first and the
second moments of the fluctuating gap ∆(x) are given by

〈∆(x)〉 = 0 , (7)

〈∆(x)∆∗(x′)〉 = ∆2
s e−|x−x

′|/ξ . (8)

In the following, we shall construct a special non-Gaussian
probability distribution of ∆(x) satisfying equations (7, 8)
for which equation (5) can be solved exactly. Moreover, as
will be briefly discussed in Section 4, it is straightforward
to generalize our model to dimensions d > 1 and to arbi-
trary energy dispersions ε(k), although the calculation of
physical quantities becomes more tedious.

Apart from its relevance in the semiclassical theory of
superconductivity, the problem defined by equations (5–8)
describes also the low-energy physics in quasi-one-
dimensional Peierls and spin-Peierls systems [5,6]. Lee,
Rice and Anderson [5] used this model to study fluctu-
ation effects close to the Peierls transition. In this case
∆(x) can be identified with the fluctuating Peierls or-
der parameter, and the two diagonal elements in our
Hamiltonian (6) represent the kinetic energy of the elec-
trons in the vicinity of the two Fermi points ±kF. Physi-
cal quantities should again be averaged over the probabil-
ity distribution of ∆(x), which can be obtained from the
Ginzburg-Landau expansion [5]. Within the Gaussian ap-
proximation, the truncated Ginzburg-Landau functional
in the disordered phase is of the form

S{∆} =
∫

dq
2π

1 + q2ξ2

2∆2
sξ

∆∗q∆q , (9)

where

∆q =
∫

dx e−iqx∆(x) . (10)

One easily verifies that equations (7, 8) are indeed satis-
fied. Note that for commensurate Peierls chains the order

parameter field can be chosen real, while it is complex
for incommensurate chains. In this work we shall focus on
the incommensurate case, where zero-energy states and
the associated Dyson singularities are absent [7,8]. Lee,
Rice and Anderson treated the effect of the order parame-
ter fluctuations on the average electronic density of states
(DOS) 〈ρ(ω)〉 within the Born approximation. Within this
approximation one finds that, in the regime where the
dimensionless parameter

γ̄ ≡ vF

2∆sξ
(11)

is small compared with unity, the DOS develops a pseu-
dogap for |ω| <∼ ∆s, with a minimum given by [9]

〈ρ(0)〉pert

ρ0
=

γ̄√
1 + γ̄2

· (12)

Here,

ρ0 =
1
πvF

(13)

is the DOS for ∆(x) = 0, which is a constant due
to the linearization of the energy dispersion. Note that
equation (12) predicts for γ̄ � 1 to leading order

〈ρ(0)〉pert

ρ0
∼ γ̄ ∝ ξ−1 , (14)

which disagrees with a non-perturbative result by
Sadovskii [10], who found for the model defined by
equations (5–8) for a Gaussian distribution of ∆(x)

〈ρ(0)〉Sadovskii

ρ0
≈ 0.541[2γ̄]1/2 ∝ ξ−1/2 . (15)

However, the algorithm constructed by Sadovskii [10]
is not exact [7,11], so that it is not clear whether
equation (15) is correct or not. To clarify this point, we
have recently developed an exact numerical algorithm for
calculating the DOS of the FGM [8]. For a Gaussian dis-
tribution of ∆(x) with zero average and covariance given
by equation (8) the result is

〈ρ(0)〉Gauss

ρ0
≈ a[2γ̄]b ∝ ξ−b , (16)

where

a = 0.6397± 0.0066 , b = 0.6397± 0.0024 . (17)

Hence, for Gaussian disorder with a finite correlation
length both perturbation theory and Sadovskii’s algorithm
do not give the correct ξ-dependence of the average DOS
at the Fermi energy. Another attempt to investigate the
discrepancy between equations (12, 15) numerically was
recently made by Millis and Monien [12]. They found for
the exponent b in equation (16) a value between 2/3 and 1,
which is outside our error-bars in equation (17). Note,
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G(q, q′, ω) =

0
BBB@

2πδ(q − q′)[ω − 2η + vFq]

[ω − 2η + vFq][ω − vFq]− |A|2
2πδ(q − q′ −Q)A

[ω − 2η + vFq][ω − vFq]− |A|2

2πδ(q − q′ +Q)A∗

[ω − 2η − vFq][ω + vFq]− |A|2
2πδ(q − q′)[ω − 2η − vFq]

[ω − 2η − vFq][ω + vFq]− |A|2

1
CCCA .

(26)

however, that Millis and Monien studied a lattice regular-
ization of the continuum model (6), and no attempt was
made to carefully relate the bare parameters that appear
in the lattice and the continuum models. In this work we
shall show that the exponent characterizing the behavior
of the DOS at the Fermi energy on ξ is non-universal in the
sense that it depends on the precise form of the probability
distribution of the fluctuating gap. In particular, the non-
Gaussian terms in the Ginzburg-Landau functional can
change the numerical value of this exponent, so that the
behavior given in equations (16, 17) can only be expected
to be correct for Gaussian disorder.

Finally, it should be mentioned that a generalization
of the model defined in equations (5–8) has been used
in reference [1] to explain the pseudogap behavior in
the cuprates within antiferromagntic Fermi liquid theory.
Then the scalar field ∆(x) should be replaced by a ma-
trix field

∑
i Si(x)σi, where σi are the Pauli matrices, and

the fields Si(x) represent the components of the antiferro-
magnetic spin density field. In fact, the recent interest in
the non-perturbative approach invented many years ago
by Sadovskii [10] is motivated by its possible relevance to
the cuprate superconductors.

2 Exact Green’s function of the fluctuating
gap model for ∆(x) = AeiQx

In this section we shall solve equation (5) exactly for
a special form of the probability distribution of ∆(x)
which is constructed such that its covariance is given by
equation (8). To begin with, let us perform the following
gauge transformation [13],

G(x, x′, ω) = e
i
2α(x)σ3 G̃(x, x′, ω)e−

i
2α(x′)σ3 , (18)

where the gauge function α(x) will be specified shortly.
From equation (5) we find that the transformed Green’s
function G̃(x, x′, ω) satisfies[

ω − vF

2
dα(x)

dx
+ ivF∂xσ3 −∆(x)e−iα(x)σ+

−∆∗(x)eiα(x)σ−
]
G̃(x, x′, ω) = δ(x− x′)σ0 . (19)

Suppose now that ∆(x) is of the form

∆(x) = AeiQx , (20)

where A and Q are both random but independent of x.
Then the x-dependence of ∆(x) in equation (19) can be re-
moved by choosing α(x) = Qx. Moreover, with this choice

the second term on the left-hand side of equation (19)
reduces to a constant

vF

2
dα(x)

dx
=
vFQ

2
≡ η , (21)

so that

[ω − η + ivF∂xσ3 −Aσ+ −A∗σ−] G̃(x, x′, ω)
= δ(x− x′)σ0 . (22)

Thus, a phase of the order-parameter varying linearly
in space can be absorbed by a finite shift of the en-
ergy. Equation (22) is translational invariant and is easily
solved by a Fourier transformation,

G̃(x, x′, ω) =
∫

dq
2π

eiq(x−x′)G̃(q, ω) , (23)

G̃(q, ω) =
1

(ω − η)2 − (vFq)2 − |A|2

×
(
ω − η + vFq A

A∗ ω − η − vFq

)
. (24)

Combining equations (18, 23, 24) and defining

G(q, q′, ω) =
∫

dx
∫

dx′e−i(qx−q′x′)G(x, x′, ω) , (25)

we finally obtain

see equation (26) above.

The crucial observation is now that, in spite of the
simple form (20) of ∆(x), it is still possible to satisfy
equations (7, 8) ifA andQ are interpreted as random vari-
ables. To obtain the exponential decay of the covariance
we require that the probability distribution of the random
momentum Q is a Lorentzian,

PQ =
ξ

π

1
(Qξ)2 + 1

, (27)

or equivalently for the random energy shift η defined in
equation (21),

Pη =
γ

π

1
η2 + γ2

, (28)

with

γ =
vF

2ξ
· (29)
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The random variable A should be distributed such that

〈A〉A = 0 , (30)
〈|A|2〉A = ∆2

s , (31)

where 〈· · · 〉A denotes averaging over the probability dis-
tribution of A. From equations (27–31) it is then easy
to show that the first two moments of the distribution
of ∆(x) are indeed given by equations (7, 8). Note that
equations (30, 31) include the cases of pure phase and
pure amplitude fluctuations. To describe pure phase fluc-
tuations we choose A = ∆seiϕ, where the phase ϕ is uni-
formly distributed in the interval [0, 2π). Then

〈· · · 〉ph
A =

∫ 2π

0

dϕ
2π
· · · (32)

Since physical quantities should be independent of the
constant phase ϕ and therefore should only depend on
|A|, the process of averaging amounts to replacing |A| by
∆s. To take into account amplitude fluctuations we follow
Sadovskii [10,14] and choose a Gaussian distribution for
the real and imaginary parts of A,

〈· · · 〉am
A =

∫ ∞
−∞

dReA dImA
π∆2

s

e−|A|
2/∆2

s · · · (33)

The disorder averaging of any functional F{∆(x)} is de-
fined by

〈F{∆(x)}〉 ≡
〈∫ ∞
−∞

dQPQF{AeiQx}
〉
A

. (34)

What is the physical meaning of an order parameter of the
form (20)? In a superconductor such an order parameter
describes a state with a uniform superflow [15]. The gauge
transformation (18) corresponds to choosing a coordinate
system where the superflow vanishes; η is the associated
energy shift. A more detailed physical justification for such
a spatially constant random energy shift η in the normal
state of the cuprate superconductors has been given by
Franz and Millis [16]: they pointed out that within a semi-
classical approximation the effect of the quasi-static fluc-
tuations of the phase of the order parameter field ∆(x)
can be described by such an energy shift η. Franz and
Millis [16] also presented a perturbative calculation of the
probability distribution Pη of η, using earlier results by
Emery and Kivelson [2]. Because in reference [16] a cumu-
lant expansion of Pη was truncated at the second order,
the form of Pη was found to be Gaussian by construction.
However, there are certainly non-Gaussian corrections to
the form of Pη given in reference [16]. Our assumption that
the distribution of η is a Lorentzian of width γ is therefore
not in contradiction to the work of reference [16]. Obvi-
ously, our parameter γ in equation (29) is the analog of the
parameter W introduced in equation (9) of reference [16].
Note, however, that Franz and Millis [16] did not con-
sider amplitude fluctuations of the order parameter, which
are described by our second random variable A. As noted
above, Gaussian amplitude fluctuations with a probabil-
ity distribution given by equation (33) have been studied

many years ago by Sadovskii [14]. Thus, in the present
work we combine the models introduced by Sadovskii [14]
and by Franz and Millis [16] such that we take both ampli-
tude and phase fluctuations into account and still obtain
an exactly solvable model.

In the following section we shall calculate a number of
physical quantities for this model exactly and confirm the
intuitive picture [2,16] that phase fluctuations fill in the
gap at the Fermi energy and render the system metallic.

3 Calculation of physical quantities

3.1 Single-particle Green’s function and spectral
function

Because 〈A〉 = 0, it follows from equation (26) that the off-
diagonal elements of the disorder averaged Green’s func-
tion vanish, and that the diagonal elements are

〈Gαα(q, q′, ω)〉 = 2πδ(q − q′)Gα(q, ω) , (35)

where

Gα(q, ω) =
〈

ω − 2η + αvFq

[ω − 2η + αvFq][ω − αvFq]− |A|2
〉
. (36)

Here, α = + refers to G11, and α = − refers to G22. The
averaging over the Lorentzian distribution (28) of the ran-
dom energy shift η can be performed analytically,

Gα(q, ω + i0+) =

〈
1

ω − αvFq −
|A|2

ω + αvFq + ivF
ξ

〉
A

,

(37)

where 〈· · · 〉A denotes averaging over the probability dis-
tribution of A. In the case of pure phase fluctuations, as
described by equation (32), this averaging is trivial, so that

Gph
α (q, ω + i0+) =

1

ω − αvFq −Σph
α (q, ω + i0+)

, (38)

with the self-energy given by

Σph
α (q, ω + i0+) =

∆2
s

ω + αvFq + ivF
ξ

· (39)

Equation (39) agrees precisely with the lowest order Born
approximation, which was used in the seminal work by
Lee, Rice, and Anderson [5]. We have thus found a special
probability distribution of ∆(x) where the lowest order
Born approximation for the average single-particle Green’s
function is exact: the order parameter is in this case of
the form ∆(x) = ∆seiQx+iϕ, where Q has a Lorentzian
distribution of width 1/ξ, and the random phase ϕ merely
assures 〈∆(x)〉 = 0, but due to gauge invariance does not
affect any physical quantities.

On the other hand, if in addition to phase fluctua-
tions also amplitude fluctuations are important, there are
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Σph+am
α (q, ω + i0+) =

∆2
s

ω + αvFq + i
vF

ξ
− ∆2

s

ω − αvFq −
2∆2

s

ω + αvFq + i
vF

ξ
− 2∆2

s

ω − αvFq −
3∆2

s

ω + αvFq + i
vF

ξ
− · · ·

·

(41)

ΣSadovskii
α (q, ω + i0+) =

∆2
s

ω + αvFq + i
vF

ξ
− ∆2

s

ω − αvFq + 2i
vF

ξ
− 2∆2

s

ω + αvFq + 3i
vF

ξ
− 2∆2

s

ω − αvFq + 4i
vF

ξ
− 3∆2

s

ω + αvFq + 5i
vF

ξ
− · · ·

·

(42)

corrections to the Born approximation. For Gaussian am-
plitude fluctuations given by equation (33) we find after
substituting t = |A|2/∆2

s

Gph+am
α (q, ω + i0+) =∫ ∞

0

dt
e−t

ω − αvFq −
t∆2

s

ω + αvFq + ivF
ξ

· (40)

Recently Kuchinskii and Sadovskii [17] arrived precisely at
equation (40) within a diagrammatic attempt to estimate
the accuracy of the method developed in reference [10]
for Gaussian disorder. For a better comparison with
Sadovskii’s Green’s function calculated in reference [10],
let us represent equation (40) as a continued frac-
tion. Expressing the integral on the right-hand side of
equation (40) in terms of the incomplete Γ -function and
using the known continued fraction expansion of this func-
tion [18], we obtain for the self-energy

see equation (41) above.

For the same model with Gaussian disorder the algorithm
due to Sadovskii [10] produces the continued fraction
expansion

see equation (42) above.

Note that only the first two lines in equations (41, 42)
agree. Kuchinskii and Sadovskii argue in reference [17]
that the true behavior of the Green’s function for Gaussian
disorder lies somewhat in between equations (41, 42). In
our model, the coexistence of amplitude fluctuations with

phase fluctuations (which are related to our random en-
ergy shift η) generates a completely new feature in the
average spectral function. The latter is related to the av-
erage Green’s function via

2πδ(q − q′)〈ρ(αkF + q, ω)〉 = − 1
π

Im 〈Gαα(q, q′, ω + i0+)〉 .
(43)

Using equation (40) we find

〈ρ(αkF + q, ω)〉ph+am =
2γ̄
π∆s

∫ ∞
0

dt
te−t

(t− ω̄2 + q̄2)2 + 4γ̄2(ω̄ − αq̄)2
, (44)

where q̄ = vFq/∆s, ω̄ = ω/∆s, and γ̄ = vF/(2∆sξ). Rep-
resentative results for different values of γ̄ are shown in
Figures 1 and 2. The dashed line is the spectral function
for γ̄ = 0 (i.e. without phase fluctuations), which is easily
calculated analytically,

〈ρ(αkF + q, ω)〉am = ∆−1
s Θ(ω̄2 − q̄2)|ω̄ + αq̄|e−(ω̄2−q̄2) .

(45)

The important point is now that for any finite γ̄ the
spectral function exhibits a logarithmic singularity at
ω = αvFq. In the vicinity of this singularity the lead-
ing behavior of the spectral function can be calculated
analytically. In the regime

|ω − αvFq| � min
{
∆2

sξ

vF
,

∆2
s

|ω + αvFq|

}
(46)
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∆
s
〈ρ

(k
F
,ω

)〉

ω̄

0
0

0.5

1

1 2-2 -1

Fig. 1. Average spectral function 〈ρ(kF, ω)〉ph+am as a func-
tion of ω̄ = ω/∆s for γ̄ = 0 (dashed line, see Eq. (45)), and
γ̄ = 0.1, 0.25, 0.5, 1 (see Eq. (44)). For any finite γ̄ there is a
logarithmic singularity at ω = 0, which acquires more weight
as γ̄ increases

the integral in equation (44) can be approximated by

〈ρ(αkF + q, ω)〉ph+am ∼ 2γ̄
π∆s

ln
[

1
2γ̄|ω̄ − αq̄|

]
=

vF

π∆2
s ξ

ln
[

∆2
sξ

vF|ω − αvFq|

]
. (47)

Thus, the interplay between phase fluctuations (described
by our random phase factor eiQx) and amplitude fluctua-
tions (described by random fluctuations of |A|) gives rise
to a logarithmic singularity at the bare energy of the elec-
tron. Note that such a singularity is weaker than the alge-
braic singularities that are typically found in the spectral
function of a Luttinger liquid. Of course, such a weak sin-
gularity cannot be called a quasi-particle peak. It is impor-
tant to point out that in the presence of amplitude fluctu-
ations alone or phase fluctuations alone such a logarithmic
singularity does not exist. Recall that for pure phase fluc-
tuations our model has the same spectral function as pre-
dicted by the Born approximation for the self-energy [5],
while for pure amplitude fluctuations our model reduces
to the model discussed by Sadovskii in reference [14]. Note
also that the approximate spectral function produced by
Sadovskii’s algorithm [19,20] for Gaussian disorder with a
finite correlation length does not exhibit any logarithmic
singularities. Whether an exact calculation of the spectral
function for more realistic probability distributions could
confirm this result or not remains an open question.

From Figure 2 it is clear that the line-shape of the
spectral function in the vicinity of the singularity is rather
broad and asymmetric. Such a behavior has recently been
seen in the photoemission spectra of a one-dimensional
band-insulator [21].

3.2 Average density of states

The average DOS is defined by

〈ρ(ω)〉 = − 1
π

Im Tr 〈G(x, x, ω + i0+)〉 . (48)

∆
s
〈ρ

(k
F

+
q,
ω

)〉

ω̄

0
0

0.5

1

1 2-2 -1

Fig. 2. Average spectral function 〈ρ(kF + q, ω)〉ph+am as a
function of ω̄ = ω/∆s for vFq/∆s = 0.2. The dashed line cor-
responds to γ̄ = 0 (see Eq. (45)), while the other curves corre-
spond to γ̄ = 0.1, 0.25, 0.5, 1 (see Eq. (44)).

Performing the q-integration in equation (37) we find

Tr 〈G(x, x, ω + i0+)〉 = − 1
vF

〈
ω + iγ√

|A|2 − (ω + iγ)2

〉
A

,

(49)

where γ is given in equation (29) and
√
z denotes the prin-

cipal branch of the square root, with the cut at the nega-
tive real axis. Note that phase fluctuations simply generate
an imaginary shift iγ to the frequency in equation (49).
In the absence of amplitude fluctuations (see Eq. (32)) we
may replace |A| → ∆s in equation (49), so that we obtain
for the average DOS

〈ρ(ω)〉ph

ρ0
= Im

z√
1− z2

, (50)

where we have defined

z =
ω + iγ
∆s

= ω̄ + iγ̄ . (51)

Equation (50) agrees exactly with the perturbative result
by Lee, Rice, and Anderson [5]. For ω = 0 we recover
equation (12). On the other hand, in the presence of addi-
tional Gaussian amplitude fluctuations, with probability
distribution given by equation (33), we obtain

〈ρ(ω)〉ph+am

ρ0
= Im

∫ ∞
0

dt
e−tz√
t− z2

· (52)

A numerical evaluation of equation (52) is shown in
Figure 3. For γ = 0 the integral in equation (52) can
be done analytically and reduces to the result obtained
by Sadovskii [14], which does not contain phase fluctua-
tions. In this case the DOS vanishes quadratically for small
frequencies,

〈ρ(ω)〉am

ρ0
∼ 2ω̄2 , |ω̄| � 1 . (53)

For any finite ξ the DOS at the Fermi energy (i.e. at ω =
0) is finite. From equation (52) we find

〈ρ(0)〉ph+am

ρ0
= R(γ̄) , (54)
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Fig. 3. Average DOS 〈ρ(ω)〉ph+am (see Eq. (52)) as a function
of ω̄ = ω/∆s for γ̄ = 0 (dashed line), and γ̄ = 0.1, 0.25, 0.5, 1.
For smaller γ̄ the pseudogap becomes deeper.

with

R(γ̄) = γ̄

∫ ∞
0

dt
e−t√
t+ γ̄2

· (55)

A numerical evaluation of R(γ̄) is shown in Figure 4. For
small and large γ̄ we obtain to leading order

R(γ̄) ∼
{√

πγ̄, γ̄ � 1
1, γ̄ � 1 . (56)

For large ξ the DOS at the Fermi energy is

〈ρ(0)〉ph+am ∼
√
π

2π∆sξ
, vFξ � ∆s , (57)

which should be compared with the result obtained within
the Born approximation, see equation (14),

〈ρ(0)〉pert = 〈ρ(0)〉ph ∼ 1
2π∆sξ

· (58)

Hence, Gaussian amplitude fluctuations increase the value
of the DOS at the Fermi energy as compared with pure
phase fluctuations. However, from Figure 4 it is evident
that the qualitative behavior of the DOS is correctly pre-
dicted by a model with pure phase fluctuations, which
exactly reproduces the perturbative result [5]. Let us em-
phasize that this is not the case if ∆(x) has a Gaussian
distribution: the prediction of lowest order perturbation
theory, 〈ρ(0)〉 ∝ ξ−1, is in disagreement with the exact
numerical result for Gaussian disorder, 〈ρ(0)〉 ∝ ξ−0.64

(see Eq. (16)). We thus conclude that the behavior of the
average DOS at the Fermi energy of the FGM in one di-
mension is non-universal and sensitive to the detailed form
of the probability distribution of ∆(x).

3.3 Lyapunov exponent and localization length

Since the energy dispersion of the FGM is linear, the
Schrödinger equation Ĥxψω(x) = ωψω(x) is a system of
linear first order differential equations. Fixing the two-
component wave-function ψω(x) arbitrarily at one space
point x0 therefore constitutes the wave-function at all

γ̄

〈ρ
(0

)〉
/
ρ

0

0.5

0
0

1

1 2 3 4

Fig. 4. Solid line: numerical evaluation of R(γ̄) =
〈ρ(0)〉ph+am/ρ0 as a function of γ̄ = vF/(2∆sξ) (see Eq. (55)).
Dashed-dotted line: the same quantity without amplitude fluc-
tuations (see Eq. (50)), which amounts to calculating the av-
erage DOS from the self-energy in first order Born approxima-
tion, as was done by Lee, Rice, and Anderson [5]. The circles
are numerical results for Gaussian disorder, obtained via the
exact numerical algorithm of reference [8].

points x. In a disordered system, the Lyapunov exponent
κ(ω) characterizes the exponential growth of the magni-
tude of the wave-function at large distances |x− x0| [22],

|ψω(x)| ∼ |ψω(x0)| exp[κ(ω)|x− x0|] . (59)

Strictly speaking, the Lyapunov exponent is defined by the
limit |x − x0| → ∞ of this equation and assumes a cer-
tain value with probability one [22]. In one dimension the
inverse of the Lyapunov exponent can be identified with
the mean localization length. According to the Thouless
formula the mean localization length `(ω) can be obtained
from the real part of the disorder-averaged single-particle
Green’s function. Originally the Thouless formula was de-
rived for a one-band model with quadratic energy disper-
sion [23], but it can be shown to hold also for the FGM,
where it can be written as [24,25]

∂

∂ω

1
`(ω)

= ReTr〈G(x, x, ω + i0+)〉 . (60)

Integrating the Thouless formula for equation (49), we
obtain

vF

`(ω)
= Re

〈√
|A|2 − (ω + iγ)2

〉
A
− γ , (61)

where the constant of integration is uniquely determined
by the requirement limω→∞ `−1(ω) = 0. For pure phase
fluctuations equation (61) reduces to

vF

∆s`(ω)ph
= Re

√
1− (ω̄ + iγ̄)2 − γ̄ , (62)

while with additional Gaussian amplitude fluctuations

vF

∆s`(ω)ph+am
= Re

[∫ ∞
0

dte−t
√
t− (ω̄ + iγ̄)2

]
− γ̄ .

(63)

A plot of the inverse localization length `−1(ω)ph+am is
given in Figure 5. For γ → 0 only amplitude fluctuations
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Fig. 5. Inverse localization length `−1(ω)ph+am/v−1
F ∆s (see

Eq. (63)) as a function of ω̄ = ω/∆s for γ̄ = 0 (dashed line),
and γ̄ = 0.1, 0.25, 0.5, 1.

are left, and equation (63) reduces to

vF

∆s`(ω)am
=
√
π

2
e−ω̄

2
, γ̄ → 0 . (64)

In the presence of phase and amplitude fluctuations the
general expression (63) simplifies at the Fermi energy to

vF

∆s`(0)ph+am
≡ P (γ̄) , (65)

where the dimensionless function P (γ̄) is given by

P (γ̄) =
∫ ∞

0

dte−t
[√

t+ γ̄2 − γ̄
]
. (66)

A comparison of equation (66) with the corresponding
expression obtained from equation (62) for phase fluctu-
ations is shown in Figure 6. For small and large γ̄ the
leading behavior is

P (γ̄) ∼
{√

π/2, γ̄ � 1

1/(2γ̄), γ̄ � 1
. (67)

In the white noise limit ξ → 0, ∆s →∞ with ∆2
s ξ = const.

only the behavior of P (γ̄) for large γ̄ matters, and in this
limit both equation (62) and equation (65) reduce to the
known white-noise result

vF

`(0)
=
∆s

2γ̄
=
∆2

sξ

vF
, ξ → 0 with ∆2

sξ = const. (68)

An extrapolation of this white-noise result towards fi-
nite correlation lengths is shown as the dashed line in
Figure 6. Evidently, for large γ the behavior of the lo-
calization length becomes independent of the precise form
of the probability distribution of the disorder. For γ̄ <∼ 1
the localization length begins to deviate significantly from
the white-noise limit and approaches a finite value of the
order of vF/∆s for γ̄ → 0, the precise value of which de-
pends on the type of the disorder. We emphasize that for
a real order parameter the low-frequency behavior of the
localization length is dominated by the Dyson singularity,
so that in this case 1/`(0) = 0 for any finite value of γ̄,
see references [24,25].

γ̄

v F
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0
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0
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Fig. 6. Inverse localization length P (γ̄) = vF/∆s`(0) at the
Fermi energy for different types of disorder. Solid line: phase
and amplitude fluctuations, see equations (65, 66); dashed-
dotted line: phase fluctuations, see equation (62); dashed
line: extrapolation of white noise limit P (γ̄) = 1/(2γ̄), see
equation (68). The circles are numerical results for Gaussian
disorder, obtained via an exact numerical algorithm [25].

To compare the localization length of our exactly
solvable toy model with phase and amplitude fluctua-
tions with the case where the distribution of ∆(x) is a
Gaussian, we have evaluated the Thouless formula (60)
numerically for Gaussian colored noise with correla-
tion length ξ, using an algorithm [25] similar to the
one developed in reference [8]. The numerical results for
vF/(∆s`(0)) are shown as the open circles in Figure 6. In
view of the simplicity of our model the agreement with
equation (65) is quite spectacular. Hence, the localization
length of our model with phase and amplitude fluctuations
is a very accurate approximation to the localization length
of the FGM with Gaussian disorder. The dashed-dotted
line in Figure 6 describes the localization length for the
case where we ignore amplitude fluctuations in our model,
which is equivalent to the perturbative result by Lee,
Rice, and Anderson [5]. The agreement with the case of
Gaussian disorder is not so good, in particular in the pseu-
dogap regime γ̄ <∼ 1.

3.4 Average conductivity

The DOS and the spectral function (see Eqs. (43, 48))
involve only the diagonal elements of the single-particle
Green’s function. The simplest physical quantity which
involves also the off-diagonal elements of G is the average
polarization 〈Π(q, iωm)〉, which is given by

2πδ(q − q′)〈Π(q, iωm)〉 = − 1
β

∑
n

∫
dp
2π

∫
dp′

2π

×Tr〈G(p+ q, p′ + q′, iω̃n+m)G(p′, p, iω̃n)〉 · (69)

Here, β is the inverse temperature, ωm = 2πm/β are
bosonic Matsubara frequencies and ω̃n = 2π(n + 1

2 )/β
are fermionic ones. Given the average polarization, the
average conductivity is easily obtained from

〈σ(q, ω)〉 = −e2 iω
q2
〈Π(q, ω + i0+)〉 · (70)
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In this work we shall only consider the real part of the
conductivity at q = 0,

Re 〈σ(ω)〉 = lim
q→0

Re 〈σ(q, ω)〉

= e2ω lim
q→0

〈ImΠ(q, ω + i0+)〉
q2

· (71)

Substituting equation (26) into equation (69) and per-
forming the Matsubara sum, we obtain for the average
polarization

〈Π(q, iωm)〉 =
〈
−
∫

dp
2π

EpEp+q + ξpξp+q + |A|2
2EpEp+q

×
[
f(Ep − η)−f(Ep+q − η)

Ep −Ep+q − iωm
+
f(Ep + η)−f(Ep+q + η)

Ep −Ep+q + iωm

]
+
∫

dp
2π

EpEp+q − ξpξp+q − |A|2
2EpEp+q

×
[

1− f(Ep − η)− f(Ep+q + η)
Ep +Ep+q − iωm

+
1− f(Ep + η)− f(Ep+q − η)

Ep +Ep+q + iωm

]〉
, (72)

where we use the notation Ep = (ξ2
p + |A|2)1/2, ξp = vFp

and f(E) = 1/[eβE + 1] is the Fermi-Dirac function. Set-
ting η = 0 in equation (72) we recover equation (2.10) of
reference [14]. Expanding equation (72) for small q and
performing the average over the Lorentzian distribution
of η, we obtain in the limit of zero temperature (β →∞),

Re 〈σ(ω)〉 =
ne2

m

π

γ

〈√
|A|2 + γ2 − |A|

〉
A
δ(ω)

+
ne2

m
arctan

( |ω|
γ

)〈 |A|2
ω2

Θ(ω2 − |A|2)√
ω2 − |A|2

〉
A

, (73)

where n/m ≡ vF/π and γ is defined in equation (29).
For pure phase fluctuations the averaging over the dis-
tribution of A is trivial and simply leads to the replace-
ment |A| → ∆s. Then the conductivity exhibits a Drude
peak with weight given by γ̄−1(

√
∆2

s + γ̄2 − ∆s), which
is separated from a continuum at higher frequencies by a
finite gap ∆s. Gaussian amplitude fluctuations wash out
the gap but do not remove the Drude peak. Averaging
over the probability distribution of the amplitude A given
in equation (33) we obtain

Re 〈σ(ω)〉 =
ne2

m

[
πD(γ̄)δ(ω) +

1
∆s

C(γ̄, ω̄)
]
, (74)

where we have used again the notation γ̄ = γ/∆s,
ω̄ = ω/∆s, and the dimensionless functions D(γ̄) and
C(γ̄, ω̄) are

D(γ̄) =
1
γ̄

∫ ∞
0

dt e−t[
√
t+ γ̄2 −

√
t] , (75)

C(γ̄, ω̄) = arctan
(
|ω̄|
γ̄

)
|ω̄|
∫ 1

0

dte−ω̄
2t t√

1− t
· (76)
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Fig. 7. Solid line: dimensionless renormalization factor D
of the weight of the Drude peak as a function of γ̄ =
vF/(2∆sξ), see equation (75); dashed-dotted line: probability
Wdeloc(0) for finding delocalized states at the Fermi energy, see
equation (78).

A graph of D(γ̄) is shown in Figure 7. Physically D(γ̄) is
the dimensionless renormalization factor for the weight of
the Drude peak, with D = 1 corresponding to an unrenor-
malized Drude peak. The leading terms in the expansion
of D(γ̄) for small and large γ̄ are

D(γ̄) ∼
{ √

π
2 γ̄, γ̄ � 1

1, γ̄ � 1
. (77)

At the first sight the existence of a Drude peak in our
model is rather surprising because in Section 3.3 we have
found that the localization length `(0) at zero frequency
is finite. In fact, we believe that for Gaussian disorder
with moments given by equations (7, 8) the conductiv-
ity of the one-dimensional FGM does not exhibit a Drude
peak, because the eigenstates at ω = 0 should all be lo-
calized for a given realization of the disorder [19,22]. On
the other hand, for our choice ∆(x) = AeiQx with spa-
tially constant but random A and Q, the Green’s func-
tion is not self-averaging, so that its spatial average is
not identical with its disorder average. As a consequence,
there is a finite probability of finding delocalized states
at the Fermi energy: for |ω − η| > |A| the solutions of
the Schrödinger equation are simply plane waves, whereas
for |ω − η| < |A| there is a gap in the spectrum, and the
Schrödinger equation does not have any normalizable solu-
tions. Hence, depending on the realization of the disorder,
the system is either a perfect conductor or an insulator.
Because in equation (60) we have defined the inverse lo-
calization length in terms of the disorder averaged Green’s
function, the value of `−1(ω) is determined by those re-
alizations of the disorder where localized states at energy
ω do not exist. However, the probability of finding delo-
calized states at the Fermi energy is finite, and can be
expressed in terms of the function P (γ̄) defined in equa-
tion (66),

Wdeloc(0) = 〈Θ(η2 − |A|2)〉

= 1− 2√
π
P (γ̄)

∼
{

2√
π
γ̄, γ̄ � 1

1, γ̄ � 1
. (78)
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Fig. 8. Incoherent part C(γ̄, ω̄) of the conductivity as a func-
tion of ω̄ = ω/∆s, see equation (76). From top to bottom:
γ̄ = 0 (dashed line) and γ̄ = 0.1, 0.25, 0.5, 1.

A graph of Wdeloc(0) is shown as the dashed-dotted line in
Figure 7. Note that the qualitative behavior of Wdeloc(0)
is very similar to the weight D of the Drude peak. The
conductivity of quasi-one-dimensional Peierls systems be-
low the Peierls transition (for which 〈∆(x)〉 6= 0) has been
discussed in references [26–28]. The authors pointed out
that in this case a gapless collective mode associated with
fluctuations of the phase of the order parameter generates
a finite Drude peak.

As discussed in Section 1, our model is also relevant to
describe higher-dimensional systems such as superconduc-
tors within a quasiclassical approximation. In this case it
is physically reasonable to expect that phase fluctuations
of the superconducting order parameter generate delocal-
ized states at the Fermi energy [2,16]. Then we indeed
expect a finite Drude peak in the conductivity, which is
broadened by disorder and becomes a sharp δ-function in
the superconducting state.

Let us now focus on the incoherent part of the con-
ductivity, which is described by the dimensionless func-
tion C(γ̄, ω̄) in equation (74). A graph of this function is
shown in Figure 8. For large correlation lengths, i.e. γ̄ � 1
there are three characteristic regimes where C(γ̄, ω̄) can
be approximated by

C(γ̄, ω̄) ∼


4
3 γ̄
−1ω̄2, |ω̄| � γ̄

4π
6 |ω̄|, |γ̄| � |ω̄| � 1
π
2 |ω̄|−3, 1� |ω̄|

. (79)

For γ̄ � |ω̄| this agrees with the result of reference [14].
Note that for a one-band model with Gaussian white noise
disorder the real part of the conductivity is known to van-
ish for small frequencies as ω2 ln2(1/ω) [29]. Thus, apart
from the logarithmic correction, the incoherent part of the
conductivity of our simple model shows the generic behav-
ior of one-dimensional disordered electrons. Note also that
for small γ̄ the relative weight of the Drude peak is of the
order of γ̄, so that the incoherent contribution dominates.

The white-noise limit is defined by letting ∆sξ → 0
while keeping ∆2

sξ finite. In this case D(γ̄) approaches
unity. In fact, in the white-noise limit the average conduc-
tivity is not modified by the disorder at all because the
function ∆−1

s C(γ̄, ω̄) vanishes if we let ∆s →∞.

4 Conclusions

In this work we have introduced a simple exactly solvable
toy model which describes the combined effects of phase
and amplitude fluctuations of an off-diagonal order pa-
rameter on the physical properties of an electronic system.
Although we have only discussed the one-dimensional ver-
sion of this model with linearized energy dispersion, the
exact solubility of our model does not depend on these
features, so that our calculations can be generalized to
more realistic models of electrons in dimensions d > 1
with non-linear energy dispersions. In this case the fluc-
tuating gap should be chosen of the form ∆(r) = AeiQ·r.
To satisfy 〈∆(r)〉 = 0 and 〈∆(r)∆∗(r′)〉 = ∆2

s e−|r−r′|/ξ,
the random variable A should be distributed such that
equations (30, 31) are satisfied, while the distribution PQ

of the d-dimensional random-vector Q should be

PQ =
1

(2π)d

∫
dre−iQ·re−|r|/ξ . (80)

For d = 1 this reduces to equation (28), but in d > 1
equation (80) is not a Lorentzian.

In one dimension our model describes the disordered
phase of Peierls and spin-Peierls chains. We have presented
explicit results for the density of states, the localization
length, the single-particle spectral function, and the real
part of the conductivity. Let us emphasize three points:

(a) The mean localization length of our toy model,
which we have defined via the Thouless formula (60), is an
excellent approximation to the mean localization length of
the FGM with Gaussian disorder. Although the respective
density of states agree quite well on a qualitative level, de-
viations become substantial for large correlation lengths,
leading to a different scaling behavior as a function of ξ.

(b) The interplay between phase and amplitude fluc-
tuations gives rise to a weak logarithmic singularity in the
single-particle spectral function of our model. Whether
this singularity is just an artifact of our toy model or not
remains an open question.

(c) The conductivity of our model exhibits not only
a pseudogap below the energy scale ∆s but also a Drude
peak at ω = 0 with a weight that vanishes as 1/ξ for
ξ → ∞. While the qualitative picture of the continuous
part should be generic for more realistic one-dimensional
disordered systems (up to logarithmic corrections for small
frequencies [29]), the Drude peak in our model is due to
the existence of delocalized states at the Fermi energy
which are created by phase fluctuations. However, in a
strictly one-dimensional disordered system, the disorder
should lead to the localization of all eigenstates, result-
ing in a vanishing zero temperature dc conductivity [29].
On the other hand, even very weak three-dimensional
interactions can lead to a phase transition leading to
long-range order and a finite Drude peak as found in
our model. We expect that forward scattering by dis-
order (which we have ignored in our calculation) will
broaden the Drude peak [30]. Experimentally, peak struc-
tures in the far infrared well below the pseudogap regime
have been observed in the optical conductivity of several
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quasi one-dimensional Peierls systems above the Peierls
transition [31].

Our model also describes superconducting fluctuations
in d > 1 within a semiclassical approximation. Recall that
our equation (5) for the Green’s function in d = 1 is for-
mally equivalent to the Andreev equation for the semiclas-
sical wave-function of a superconductor. The latter can
be obtained from the more general Gorkov equation (1)
in the limit of a slowly varying order parameter. To cal-
culate physical observables, the solutions of the Andreev
equations should be averaged over the classical trajecto-
ries of the electrons [4], which we have not done in this
work. Therefore we cannot make any quantitative com-
parisons with experimental data for high-temperature su-
perconductors. However, some qualitative features of our
results seem to agree with experiments. In particular, in
our model the pseudogap in the conductivity coexists with
a small Drude peak. Such a behavior has been seen experi-
mentally in the normal state of high-temperature super-
conductors [32]. In our model the Drude peak is a direct
consequence of the fluctuating phase of the superconduct-
ing order parameter. Without phase fluctuations all charge
carriers at the Fermi energy are localized and there is no
Drude peak. In this respect our model describes a bad
metal in the sense defined by Emery and Kivelson [2].

This work was financially supported by the DFG (Grants
Nos. Ko 1442/3-1 and Ko 1442/4-2).
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